1(i) At A: $3\times0 + 2\times0 + 20\times(-15) + 300 = 0$ At B: $3\times100 + 2\times0 + 20\times(-30) + 300 = 0$ At C: $3\times0 + 2\times100 + 20\times(-25) + 300 = 0$ So ABC has equation $3x + 2y + 20z + 300 = 0$	M1 A2,1,0 [3]	substituting co-ords into equation of plane for ABC OR using two vectors in the plane form vector product M1A1 then 3x+2y+20z = c = -300 A1 OR using vector equation of plane M1,elim both parameters M1, A1
(ii) $\overrightarrow{DE} = \begin{pmatrix} 100 \\ 0 \\ -10 \end{pmatrix} \overrightarrow{DF} = \begin{pmatrix} 0 \\ 100 \\ 5 \end{pmatrix}$	B1B1	
$ \begin{pmatrix} 100 \) (2 \) \\ 0 \ \ \ \ \ \ \frac{1}{2} 100 \ 2 + 0 \times -1 + -10 \times 20 \ 200 \ 200 \ \theta \\ -100 \ \ 20 \end{pmatrix} $	B1	need evaluation
$ \begin{pmatrix} 0 & 0 & 2 \\ 100 & 0 & -1 \\ 5 & 0 & 0 \\ 5 & 0 & 20 \end{pmatrix} = 0 \times 2 + 100 \times -1 + 5 \times 20 = -100 + 100 = 0 $	B1	need evaluation
Equation of plane is $2x - y + 20z = c$ At D (say) $c = 20 \times -40 = -800$ So equation is $2x - y + 20z + 800 = 0$	M1 A1 [6]	
(iii) Angle is θ , where $\begin{pmatrix} 2 \\ \end{pmatrix} \begin{pmatrix} 3 \\ \end{pmatrix}$		
$\Rightarrow \theta = 8.95^{\circ} \left(\begin{array}{c} -1 \\ 20 \end{array} \right) \left(\begin{array}{c} 2 \\ 20 \end{array} \right) \left(\begin{array}{c} 20 \end{array} \right) \left(\begin{array}{c} 20 \\ 20 \end{array} \right) \left(\begin{array}{c} 20 \end{array} \right) \left(\begin{array}{c} 20 \\ 20 \end{array} \right) \left(\begin{array}{c} 20$	M1 A1 A1	formula with correct vectors top bottom
	A1cao ([4]	(φ5 θ.156 radians)
(iv) RS: $\mathbf{r} = \begin{pmatrix} 15 \\ 34 \\ 0 \end{pmatrix}^{+\lambda} \begin{vmatrix} 2 \\ 20 \end{vmatrix}$	B1	$\begin{pmatrix} 34 \\ 0 \end{pmatrix}$ +
$ \Rightarrow 3(15+3\lambda) + 2(34+2\lambda) + 20.20\lambda + 300 = 0 \Rightarrow 45+9\lambda + 68 + 4\lambda + 400\lambda + 300 = 0 \Rightarrow 413+413\lambda = 0 \Rightarrow \lambda = -1 Since (12, 22) 200\lambda = 0 $	B1	$ \begin{array}{c} \begin{pmatrix} 3 \\ \ddots \\ \lambda = -1 \\ 20 \end{pmatrix} $
so S is (12, 32, -20)	M1	solving with plane
	A1	
	A1 [5]	cao

2 Normal vectors are $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	B1 B1	
$\Rightarrow \begin{pmatrix} 2\\3\\4 \end{pmatrix} \begin{pmatrix} 1\\-2\\1 \end{pmatrix} = 2 - 6 + 4 = 0$	M1	
\Rightarrow planes are perpendicular.	E1	
	[4]	

$3 \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \implies \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 - \lambda \\ 2 + 2\lambda \\ -1 + 3\lambda \end{pmatrix}$		
When $x = -1$, $1 - \lambda = -1$, $\Rightarrow \lambda = 2$	M1	Finding λ or μ
$\Rightarrow y = 2 + 2\lambda = 6,$		
$z = -1 + 3\lambda = 5$		
\Rightarrow point lies on first line	E1	checking other two coordinates
$\mathbf{r} = \begin{pmatrix} 0\\6\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\0\\-2 \end{pmatrix} \Rightarrow \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} \mu\\6\\3-2\mu \end{pmatrix}$		
When $x = -1$, $\mu = -1$,		
$\Rightarrow y = 6$,		
$z = 3 - 2\mu = 5$	F1	checking other two co-ordinates
\Rightarrow point lies on second line	LI	
Angle between $\begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ is θ , where	M1	Finding angle between correct vectors
$\cos\theta = \frac{-1 \times 1 + 2 \times 0 + 3 \times -2}{\sqrt{14}\sqrt{5}}$	M1	use of formula
$= -\frac{7}{\sqrt{70}}$	A1	$\pm \frac{7}{\sqrt{70}}$
$\Rightarrow \theta = 146.8^{\circ}$		
\Rightarrow acute angle is 33.2°	A1cao [7]	Final answer must be acute angle

4 (i) P is (0, 10, 30) Q is (0, 20, 15) R is (-15, 20, 30)	B2,1,0	
$\Rightarrow \qquad \overrightarrow{PQ} = \begin{pmatrix} 0 - 0 \\ 20 - 10 \\ 15 - 30 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \\ -15 \end{pmatrix} *$	E1	
$\Rightarrow \qquad \overrightarrow{PR} = \begin{pmatrix} -15 - 0 \\ 20 - 10 \\ 30 - 30 \end{pmatrix} = \begin{pmatrix} -15 \\ 10 \\ 0 \end{pmatrix} *$	E1 [4]	
(ii) $\begin{pmatrix} 2\\3\\2 \end{pmatrix} \begin{pmatrix} 0\\10\\-15 \end{pmatrix} = 0 + 30 - 30 = 0$	M1	Scalar product with 1 vector in the plane OR vector x product oe
$\begin{pmatrix} 2\\3\\2 \end{pmatrix} \begin{pmatrix} -15\\10\\0 \end{pmatrix} = -30 + 30 + 0 = 0$	E 1	
$\Rightarrow \begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix}$ is normal to the plane		
\Rightarrow equation of plane is $2x + 3y + 2z = c$	M1	2x + 3y + 2z = c or an appropriate vector form
At P (say), $x = 0$, $y = 10$, $z = 30$ $\Rightarrow c = 2 \times 0 + 3 \times 10 + 2 \times 30 = 90$	M1dep	substituting to find <i>c</i> or completely eliminating parameters
\Rightarrow equation of plane is $2x + 3y + 2z = 90$	A1 cao [5]	
(iii) S is $(-7\frac{1}{2}, 20, 22\frac{1}{2})$	B1	
$\overrightarrow{OT} = \overrightarrow{OP} + \frac{2}{3}\overrightarrow{PS}$	M1	Or $\frac{1}{3} \xrightarrow[OP+OR+OQ]{} \xrightarrow{O} \xrightarrow{O}$ oe ft their S
$= \begin{pmatrix} 0\\10\\30 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} -7\frac{1}{2}\\10\\-7\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -5\\16\frac{2}{3}\\25 \end{pmatrix}$	A1ft	Or $\frac{1}{3} \begin{pmatrix} 0 \\ 10 \\ 30 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} -7\frac{1}{2} \\ 20 \\ 1 \end{pmatrix}$ ft their S
So T is $(-5, 16\frac{2}{3}, 25)^*$	E1 [4]	$\left(22\frac{1}{2}\right)$
(iv) $\mathbf{r} = \begin{pmatrix} -5\\ 16\frac{2}{3}\\ 25 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix}$	B1,B1	$ \begin{pmatrix} -5\\ 16\frac{2}{3}\\ 25 \end{pmatrix} + \dots + \lambda \begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix} $
At C (-30, 0, 0): $-5 + 2\lambda = -30, \ 16\frac{2}{3} + 3\lambda = 0, \ 25 + 2\lambda = 0$	M1 A1	Substituting coordinates of C into vector equation At least 2 relevant correct equations for 2
1^{st} and 3^{rd} eqns give $\lambda = -12 \frac{1}{2}$, not compatible with 2^{nd} . So line does not pass through C.	E1 [5]	oe www

PhysicsAndMathsTutor.com

5	(i)	$DE = \sqrt{[(-5)^2 + 0^2 + 1^2]} = \sqrt{26}$	M1 A1	oe	
		$\cos \theta = 5/\sqrt{26} \text{ oe} \qquad 1 \boxed{\frac{\sqrt{26}}{5}}$	M1	oe using scalar products eg $-5\mathbf{i} + \mathbf{k}$ with \mathbf{i} oe	
		$\Rightarrow \theta = 11.3^{\circ}$	A1 [4]	or better (or 168.7°). Allow radians.	

(Questio	n Answer	Marks	Guidance
5	(ii)	$\overline{\mathbf{A}}\vec{\mathbf{E}} = \begin{pmatrix} 1\\4\\3 \end{pmatrix}, \ \overline{\mathbf{E}}\vec{\mathbf{D}} = \begin{pmatrix} 5\\0\\-1 \end{pmatrix}$	B1	two relevant direction vectors (or $6\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ oe)
		$ \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix} = 1 - 16 + 15 = 0 $ $ (5) (1) $	B1	scalar product with a direction vector in the plane (including evaluation and = 0) (OR M1 forms vector cross product with at least two correct terms in solution)
		$ \begin{pmatrix} 5 \\ 0 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix} = 5 + 0 - 5 = 0 $	B1	scalar product with second direction vector, with evaluation. (following OR above, A1 all correct ie a multiple of $\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$)
		\Rightarrow i - 4 j + 5 k is normal to AED		(NB finding only one direction vector and its scalar product is B1 only.)
		$\Rightarrow \text{ eqn of AED is } \begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -4 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -4 \\ 5 \end{bmatrix}$	M1	for $x - 4y + 5z = c$ oe
		$\Rightarrow x - 4y + 5z = 16$ B lies in plane if $8 - 4(-a) + 5.0 = 16$ $\Rightarrow a = 2$	A1 M1 A1	M1A0 for $\mathbf{i} - 4\mathbf{j} + 5\mathbf{k} = 16$ allow M1 for subst in their plane or if found from say scalar product of normal with vector EB can also get M1A1 For first five marks above SC1 , if states, 'if $\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$ is normal then of form $x - 4y + 5z = \mathbf{c}$ ' and substitutes one coordinate gets M1A1, then substitutes other two coordinates A2 (not A1,A1).Then states so $\begin{pmatrix} 1\\ -4\\ 5 \end{pmatrix}$ is normal can get B1 provided that there is a clear argument ie M1A1A2B1. Without a clear argument this is B0. SC2 , if finds two relevant vectors, B1 and then finds equation of the plane from vector form, $r = a + \mu b + \lambda c$ gets B1. Eliminating parameters B1cao. If then states 'so $\begin{pmatrix} 1\\ -4\\ -4 \end{pmatrix}$ is normal' can get B1 (4/5).
			[7]	(5)

Question		n	Answer	Marks	Guidance
5	(iii)		D: $6 + 2 = 8$ B: $8 + 0 = 8$ C: $8 + 0 = 8$ \Rightarrow plane BCD is $x + z = 8$ Angle between $\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$ and $\mathbf{i} + \mathbf{k}$ is θ $\Rightarrow \cos \theta = \times 1 + (-4) \times 0 \times 1) / \sqrt{42} \sqrt{2} / \sqrt{84}$	B2,1,0 M1 M1 A1	or any valid method for finding $x + z = 8$ gets M1A1 between two correct relevant vectors complete method (including cosine) (for M1 ft their normal(s) to their plane(s)) allow correct substitution or $\pm 6/\sqrt{84}$, correct only
			$\Rightarrow \theta = 49.1^{\circ}$	A1 [6]	or 0.857 radians (or better) acute only