1(i) At A: $3 \times 0+2 \times 0+20 \times(-15)+300=0$ At B: $3 \times 100+2 \times 0+20 \times(-30)+300=0$ At C: $3 \times 0+2 \times 100+20 \times(-25)+300=0$ So ABC has equation $3 x+2 y+20 z+300=0$	M1 A2,1,0 [3]	substituting co-ords into equation of plane... for ABC OR using two vectors in the plane form vector product M1A1 then $3 x+2 y+20 z=c=-300 \mathrm{~A} 1$ OR using vector equation of plane M1,elim both parameters M1, A1
Equation of plane is $2 x-y+20 z=c$ At D (say) $c=20 \times-40=-800$ So equation is $2 x-y+20 z+800=0$	B1B1 B1 B1 M1 A1 [6]	need evaluation need evaluation
(iii) Angle is θ, where $\Rightarrow \quad \theta=8.95^{\circ}\left(\begin{array}{l} 2 \end{array}\right)\left(\begin{array}{l} 3 \\ -1 \\ 20 \end{array}\right) \cdot\|\cdot\| \begin{aligned} & 2 \\ & 20 \end{aligned}\|,\|, ~(-1)^{2}+20^{2} \sqrt{3^{2}+2^{2}+20^{2}}=\frac{404}{\sqrt{405} \sqrt{413}}$	M1 A1 A1 A1cao [4]	formula with correct vectors top bottom $\text { (} 95 \text { ¢ } 0.156 \text { radians) }$
	B1 B1 M1 A1 A1 [5]	$\begin{aligned} & \binom{34}{0}+\ldots \\ & \left.. \lambda^{2}=-\lambda \left\lvert\, \begin{array}{l} 3 \\ 2 \\ 20 \end{array}\right.\right) \end{aligned}$ solving with plane cao

$\mathbf{2}$ Normal vectors are $\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ and $\left(\begin{array}{l}1 \\ -2 \\ 1\end{array}\right)$	$\left(\begin{array}{l}\text { B1 } \\ \text { B1 }\end{array}\right.$	
$\Rightarrow\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right) \cdot\left(\begin{array}{l}1 \\ -2 \\ 1\end{array}\right)=2-6+4=0$	M 1	
\Rightarrow planes are perpendicular.	E 1	

$3 \quad \mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1-\lambda \\ 2+2 \lambda \\ -1+3 \lambda\end{array}\right)$
When $x=-1,1-\lambda=-1, \Rightarrow \lambda=2$
$\Rightarrow y=2+2 \lambda=6$,
$z=-1+3 \lambda=5$
\Rightarrow point lies on first line

$$
\mathbf{r}=\left(\begin{array}{l}
0 \\
6 \\
3
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
0 \\
-2
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
\mu \\
6 \\
3-2 \mu
\end{array}\right)
$$

When $x=-1, \mu=-1$,
$\Rightarrow y=6$,

$$
z=3-2 \mu=5
$$

\Rightarrow point lies on second line
Angle between $\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ -2\end{array}\right)$ is θ, where
$\cos \theta=\frac{-1 \times 1+2 \times 0+3 \times-2}{\sqrt{14} \cdot \sqrt{5}}$

$$
=-\frac{7}{\sqrt{70}}
$$

$\Rightarrow \quad \theta=146.8^{\circ}$
\Rightarrow acute angle is 33.2°

M1

E1 checking other two coordinates

E1

$$
\pm \frac{7}{\sqrt{70}}
$$

A1cao

Final answer must be acute angle

$$
\begin{array}{ll}
\mathbf{4} \text { (i) } & \mathrm{P} \text { is }(0,10,30) \\
& \mathrm{Q} \text { is }(0,20,15) \\
& \mathrm{R} \text { is }(-15,20,30) \\
\Rightarrow & \overrightarrow{\mathrm{PQ}}=\left(\begin{array}{l}
0-0 \\
20-10 \\
15-30
\end{array}\right)=\left(\begin{array}{l}
0 \\
10 \\
-15
\end{array}\right) * \\
\Rightarrow & \overrightarrow{\mathrm{PR}}=\left(\begin{array}{l}
-15-0 \\
20-10 \\
30-30
\end{array}\right)=\left(\begin{array}{l}
-15 \\
10 \\
0
\end{array}\right) *
\end{array}
$$

B2,1,0

E1

E1
[4]

	Ques	Answer	Marks	Guidance
5	(ii)	$\begin{aligned} & \overline{\mathrm{A}} \overrightarrow{\mathrm{E}}=\left(\begin{array}{l} 1 \\ 4 \\ 3 \end{array}\right), \overrightarrow{\mathrm{E}} \overrightarrow{\mathrm{D}}=\left(\begin{array}{l} 5 \\ 0 \\ -1 \end{array}\right) \\ & \left(\begin{array}{l} 1 \\ 4 \\ 3 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right)=1-16+15=0 \\ & \left(\begin{array}{l} 5 \\ 0 \\ -1 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right)=5+0-5=0 \end{aligned}$ $\Rightarrow \quad \mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$ is normal to AED $\Rightarrow \quad \text { eqn of AED is }\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right)=\left(\begin{array}{l} 0 \\ -4 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right)$ $\Rightarrow \quad x-4 y+5 z=16$ B lies in plane if $8-4(-a)+5.0=16$ $\Rightarrow \quad a=2$	B1 B1 B1 M1 A1 M1 A1 [7]	two relevant direction vectors (or $6 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$ oe) scalar product with a direction vector in the plane (including evaluation and $=0$) (OR M1 forms vector cross product with at least two correct terms in solution) scalar product with second direction vector, with evaluation. (following OR above, A1 all correct ie a multiple of $\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$) (NB finding only one direction vector and its scalar product is B1 only.) for $x-4 y+5 z=c$ oe M1A0 for $\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}=16$ allow M1 for subst in their plane or if found from say scalar product of normal with vector EB can also get M1A1 For first five marks above SC1, if states, 'if $\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$ is normal then of form $x-4 y+5 z=c$ ' and substitutes one coordinate gets M1A1, then substitutes other two coordinates A2 (not $\mathrm{A} 1, \mathrm{~A} 1$).Then states so $\left(\begin{array}{l}1 \\ -4 \\ 5\end{array}\right)$ is normal can get B1 provided that there is a clear argument ie M1A1A2B1. Without a clear argument this is B0. SC2, if finds two relevant vectors, B 1 and then finds equation of the plane from vector form, $r=a+\mu b+\lambda c$ gets B 1 . Eliminating parameters B1cao. If then states 'so $\left(\begin{array}{l}1 \\ -4 \\ 5\end{array}\right)$ is normal' can get $\mathrm{B} 1(4 / 5)$.

	Questis	Answer	Marks	Guidance
8	(iii)	$\begin{aligned} & \hline \text { D: } 6+2=8 \\ & \text { B: } 8+0=8 \\ & \text { C: } 8+0=8 \\ & \Rightarrow \quad \text { plane } B C D \text { is } x+z=8 \\ & \text { Angle between } \mathbf{i}-4 \mathbf{j}+5 \mathbf{k} \text { and } \mathbf{i}+\mathbf{k} \text { is } \theta \\ & \Rightarrow \quad \cos \theta=\times 1+(-4) \times 0 \quad \times 1) / \sqrt{ } 42 \sqrt{ } 2 \quad / \sqrt{ } 84 \\ & \Rightarrow \quad \theta=49.1^{\circ} \end{aligned}$	B2,1,0 M1 M1 A1 A1 [6]	or any valid method for finding $x+z=8$ gets M1A1 between two correct relevant vectors complete method (including cosine) (for M1 ft their normal(s) to their plane(s)) allow correct substitution or $\pm 6 / \sqrt{84}$, correct only or 0.857 radians (or better) acute only

